Shayan Davani

Ruston, LA, USA 9

linkedin.com/in/shayan-davani 🛅

Summary

Detail-oriented engineer with demonstrated experties in design, fabrication, test, and modeling of MEMS, microfluidics, and thermal systems. Hands-on experience in device characterization (optical, structural, thermal, electrical). Skilled with CAD, CFD tools, and structural Finite Element Analysis

Technical Skills and Experience

General skills/prototyping: Data acquisition, Rapid prototyping, Machine shop, Controllers/sensors

Microfabrication: Photomask Design, Photolithography, spin coating, dry oxidation, Wet/Dry Etch, Wafer Bonding, Wafer Packaging, Thin films, Oxygen plasma bonding

Analytical Skills: Microfluidics, MEMS Design, Thermal analysis, Statistical Process Control (SPC), FMEA, Finite Element Analysis (FEA), CAD tools, Data analysis, Fluid flow, Structural analysis

Characterization: SEM, 3D confocal laser microscope (VK-100), Optical microscope, Film thickness measurement (Filmetrics), Surface profilometer (Dektak 150), Infrared Thermography (FLIR), thermal sensors

Software Skills

- **ANSYS-Fluent** •
- L-Edit
- C/C++

- COMSOL SolidWorks
 - Microsoft Office
 - R

MATLAB

AutoCAD

- TCAD
 - Minitab

LabView

Work Experience

Postdoctoral Research Fellow

Multiscale Energy and Materials lab. Louisiana Tech University

- Conducted validation tests, accurate thermal measurements, and data acquisition to evaluate the heat transfer performance of different thermal management solutions (multiphase, forced convection, natural convection)
- Improved the surface cooling performance by forming CuO nano-structures coating on heating surface
- Led the image processing project for extracting the bubble features (diameter, number) from high speed videos •
- Collaborated in design, fabrication, and test of a setup for evaluating the multi-phase cooling at saturation point •

Graduate Research Assistant

Microfluidics Lab. Louisiana Tech University

- Designed a single complementary photomask for front and backside photolithography process (2 layer) •
- Generated a hard mask for KOH etch process by HF etching of the SiO2 laver grown through dry oxidation
- Applied photolithography (front and backside) and anisotropic etch (KOH etch of silicon) for defining • microchannels in silicon wafer
- Performed wafer dicing, bonding, and packaging to seal the counterflow microfluidic devices •
- Applied the low-cost rapid prototyping technique to fabricate the hybrid (Glass/Kapton/Quartz) microfluidic chips
- Performed GR&R analysis to find the uncertainty associated with the performance of microfluidic device

Intern

Farabard Co, Design, production, and construction of cooling towers for industry

- Applied Meshing tool Gambit software for generating mesh for NACA airfoils
- Interpreted handbooks, designs, and industrial standards

Technical Projects

- Design analysis of a highly sensitive thermoelectric MEMS sensor for biological sensing applications (FEA)
- Experimental and numerical study of pressure effect on natural convection cooling (CFD)
- Process simulation of a delta-doped MOSFET using TSUPREM4
- Nonlinear Mechanical-electrical analysis of a flexible 3D printed MEMS strain-sensor (FEA)

Sep 2013-Feb 2019

- Ruston, LA

Aug 2019-present Ruston, LA

June 2009-Sep 2009 Iran, Shiraz

Education

Ph.D. Engineering, Micro/Nanoscale Systems <i>Louisiana Tech University</i> , Ruston, LA Dissertation title: "Development of a Counter-flow Thermal Gradient Microfluidic Device"	Feb. 2019 GPA 3.88
Master of Engineering Mechanical Engineering Department Sahand University of Technology, Tabriz, Iran Thesis title: "Numerical analysis of flow and heat transfer of wavy microchannels in slip-flow Convection cooling application)	Jan. 2012 GPA 3.46 regime" (Forced
Bachelor of Science Mechanical Engineering Department	Sep. 2009 GPA 3.00

Shiraz University, Shiraz, Iran

PUBLICATIONS/ TECHNICAL PRESENTATIONS

Shayan Davani, Varun L. Kopparthy, Niel D. Crews. "*Detecting Thermal Asymmetry in Microfluidics for Sensor Applications: Critical Design Considerations and Optimization*" International Journal of Heat and Mass Transfer, 2019

Shayan Davani, Farnaz Rezaei, Arden L. Moore, Niel D. Crews. "*Counter-flow for Stabilization of Microfluidic Thermal Reactors*". Applied Thermal Engineering Journal, **Under Review**, October 2020

Shayan Davani, S. M. Mahdi Mofidian, Kasra Momeni, Hamzeh Bardaweel. "3D-Printed Strain Sensors: Electro-Mechanical Simulation and Design Analysis using Nonlinear Material Model and Experimental Investigation". IEEE sensors, 2020

Shayan Davani, Bin Zhang, Luke Hansen, Wen J. Meng, Arden, L. Moore. "Subcooled Pool Boiling Performance of Asrolled and Nanostructure-modified 1D Micro-Fin Arrays by High Throughput Roll Molding". **Working paper**

Brandon Doran, Bin Zhang, Kojo Asiamah Osafo, **Shayan Davani**, Abigail Walker, Stephen Akwaboa, Wen J. Meng, Patrick Mensah, Arden L. Moore. "Subcooled Pool Boiling Performance of Aluminum Alloy 1D Micro-Fin Arrays Fabricated by High Throughput Roll Molding". **Working paper**

Shayan Davani, Bin Zhang, Luke Hansen, Wen Jin Meng, Arden, L. Moore. "Subcooled Pool Boiling Performance of Asrolled and Nanostructured 1D Micro-Fin Arrays by High Throughput Roll Molding". 2020 Consortium for Innovation in Manufacturing & Materials (CIMM) Symposium (LA EPSCoR)- 3rd place (Among the participants of five Louisiana Universities)

Shayan Davani, Varun L. Kopparthy, Niel D. Crews. "Continuous-flow Microfluidic Calorimeter: Sensitivity Optimization of Experimental Prototype through 3-D Modeling." International Conference on Nanochannels, Microchannels, and Minichannels, ASME2017

Shayan Davani, Varun L. Kopparthy, Niel D. Crews. "Highly Sensitive Thermal Sensor for Microfluidic Chips: 3-D Modeling for Design Considerations and Optimizations". International Conference on Nanochannels, Microchannels, and Minichannels, ASME2017

Shayan Davani, Niel D. Crews. "Characterization and Modification of a Mesoscale Temperature Gradient". Heat Transfer, Fluids Engineering, & Nanochannels, Microchannels, and Minichannels Conferences, ASME 2016

Certifications/ Organizations

SIX-SIGMA (GREEN BELT) MATLAB Image processing Learning LabView Introduction to GD&T Louisiana Tech University UDEMY LinkedIn Learning LinkedIn Learning Apr 2017-No expiration date Dec 2019-No expiration date Nov 2020-No expiration date Nov 2020-No expiration date

Organizations ASME (2015-present), SAMPE (2018, present