
Pranay Singh Parihar
P H O N E + 9 1 7 5 6 8 5 9 1 9 8 2 • E - M A I L: P R A N A Y S P A R I H A R @ gmail. com

 Work Experience

JP Morgan Chase & Co May2020

Software Engineering Intern

 I was responsible for optimizing and troubleshooting a website.
 I had to get familiar with JPMorgan Chase frameworks and tools

 Understanding the concepts of git was also part of the job.
 Display data visually for traders (Trader's Dashboard)
 Use JP Morgan's perspective framework.
Deloitte May2020

Technology Consultant Internship

 Understanding Cloud Computing
 Cloud Feasibility Assessment
 Cloud Readiness Assessment

 Client Discovery

 Design a Business Case

 Considerations for Mobilization

 Define the project approach

 Conduct a market scan

 Further analysis & solution presentation

Tivona Global October 2020

DevOps Intern

 Continuous deployment automation using bash scripting.

 Automated AWS cloud deployment using Terraform from scratch.
 Implemented terraform functions on Terraform cloud.
 Implemented sentinel policies on Terraform cloud.
 Using dynamic blocks to dynamically create multiple resources of block within a resource from a complex value such

as a list of map.
 Create IAM policies for users.
 Lambda function to attach the IAM policy to an IAM user and save the CloudTrail logs for IAM user in DynamoDB,

using Boto.

 Education

Electrical and Electronics Engineering, Vellore Institute Of Technology 2017 - 2021

 Major in Electrical and Electronics Engineering, School of Electrical Engineering-coursework

 included electrical machines, Control Systems, and Signals and Systems.

Certifications
Amazon Web Services

Certified Cloud Practitioner
 Define what the AWS Cloud is and the basic global infrastructure
 Describe basic AWS Cloud architectural principles
 Describe the AWS Cloud value proposition
 Describe key services on the AWS platform and their common use cases (for example, compute and analytics)
 Describe basic security and compliance aspects of the AWS platform and the shared security model
 Define the billing, account management, and pricing models
 Identify sources of documentation or technical assistance (for example, whitepapers or support tickets)
 Describe basic/core characteristics of deploying and operating in the AWSCloud

IBM

Istio and IBM Cloud Kubernetes Service

 Configure Istio to receive telemetry data
 Istio Ingress controller

 Perform A/B testing with Istio

 Set up Istio Certificate Authority (CA)

Aviatrix

Aviatrix Certified Engineer

 Multi-Cloud Networking Architecture (MCNA)

 Multi-Cloud Connectivity

 Egress Filtering

 Network Automation

GitLab

GitLab 101

 GitLab CI/CD
 GitLab Collaboration

 GitLab Mergify

 Projects
Portfolio Website with AWS Amplify, Lambda and Terraform

 AWS Amplify: This is where my static website is hosted and where all of your HTML, CSS,
JavaScript and assets will live.

 API Gateway: My AWS Amplify website will make an API call when a form is processed and when this
call is made to API Gateway, it will trigger a Lambda function.

 Lambda: The Lambda function can do whatever you want but in our case, it simply sends the data from
the form to an email address using AWS Simple Email Service (SES).

 Terraform: Terraform will be used to automate the process of creating lambda functions The

AWS::Lambda::Function resource creates a Lambda function. To create a function, you need a

deployment package and an execution role. The deployment package contains your function code. The
execution role grants the function permission to use AWS services, such as Amazon CloudWatch Logs for
log streaming and AWS X-Ray for request tracing. VCS Integration was done using BitBucket. GitOps
workflow was used for CI/CD pipeline. Sentinel Check was used to setup resource setup policy.

Serverless App with S3, Lambda and Terraform
 Simple Storage Service(S3): This is where my static website is hosted and where all of my HTML,

CSS, JavaScript and assets will live.

 API Gateway: Your S3 website will make an API call when a form is processed and when this call is made
to API Gateway, it will trigger a Lambda function.

 Lambda: The Lambda function can do whatever you want but in our case, it simply sends the data from
the form to an email address using AWS Simple Email Service (SES).

 Terraform: Terraform will be used to automate the process of creating lambda functions The

AWS::Lambda::Function resource creates a Lambda function. To create a function, you need a

deployment package and an execution role. The deployment package contains your function code. The
execution role grants the function permission to use AWS services, such as Amazon CloudWatch Logs for
log streaming and AWS X-Ray for request tracing.

AWS Serverless Ecommerce Platform

Communication/Messaging:

 AWS AppSync for interactions between users and the ecommerce platform.
 Amazon API Gateway for service-to-service synchronous communication (request/response).
 Amazon EventBridge for service-to-service asynchronous communication (emitting and reacting to

events).
Authentication/Authorization:

 Amazon Cognito for managing and authenticating users, and providing JSON web tokens used by

services.
 AWS Identity and Access Management for service-to-service authorization, either between

microservices (e.g. authorize to call an Amazon API Gateway REST endpoint), or within a microservice
(e.g. granting a Lambda function the permission to read from a DynamoDB table).

Compute:

 AWS Lambda as serverless compute either behind APIs or to react to asynchronous events.
Storage:

 Amazon DynamoDB as a scalable NoSQL database for persisting information.

CI/CD:
 Terraform with AWS Serverless Application Model for defining AWS resources as code in most

services.
 AWS Cloud Development Kit (CDK) for defining AWS resources as code in the payment-3p service.
 Amazon CodeCommit as a repository to trigger the CI/CD pipeline.
 Amazon CodeBuild for building artifacts for microservices and running tests.
 Amazon CodePipeline for orchestrating the CI/CD pipeline to production.

Monitoring:
 Amazon CloudWatch for metrics, dashboards, log aggregation.
 AWS X-Ray for tracing across AWS services and across microservices.

Leadership Roles
Campus Great Learning Academy

Campus Ambassador
 Leading a group of people
 Working in teams
 Working under a deadline
 Working under a pressure

Technical Skills
 Programming Languages – HTML, Scripting, Python, JavaScript, Bash, AWS, Azure,CSS, MongoDB, NoSQL,

SQL, Docker, Bash, Terraform, Google Cloud Platform

 Software - Adobe Photoshop, Adobe Premier Pro, MS Excel, MS PowerPoint, Docker

English Language Proficiency
EF Standard English Test (EF SET)

78% Overall

 Listening 80 - Reading 75

 CEFR Rank- C2(Proficient)

