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Satellite Image is used to analysis the ground area to identify the object. The main barrier of this 

image processing method is the pixel-wise analysis. The fully convolutional neural network is a 

popular method to process this type of image processing. However, train stage is taken the maximum 

computation of this method. Parallelize version of this method to reduce computation time is 

researching topics, now. But little work is done on optimize the complexity of the algorithm of this 

method. In this paper, we find an optimized algorithm solution of this algorithm. Also, the result of the 

parallel version of the proposed algorithm is discussed. 
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INTRODUCTION 
 

The Convolutional Neural Network is the extracted version of 

the artificial neural network, which was first introduced on 

1943 based on cat vision. The Artificial Neural Net is the 

artificial improvement of biological Neural functionality. Like, 

biological neuron it takes an input value and process it then 

passes it, by applying Linear operation, nonlinear operation and 

then sends to the next layer neuron(hidden layer).Like previous 

neuron the next neuron process (linear-nonlinear operation) the 

input data and trance to the next neuron. This process is 

continued until it reaches the output layer, where the score is 

calculated and compared it with expected score to calculate the 

error. Base on the error weights of each neuron is updated to 

reduce it. The Convolutional Neural Network first introduced 

on 1997 by LeNet-5[1]. It becomes more popular by Alex 

Net[2] in 2012 when a parallel version by GPU and addition 

future like Dropout concept was introduced. They introduced 

their work by a library like cudaCNN [2]. As per LeNet-5[1] 

the basic convolutional neural network containing 

convolutional layer, pooling layer, fully connected layer.  
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The convolutional layer performs the same operation (linear-

non-linear) like the neuron on the artificial neuron network. In 

the pooling layer, the future is reduced. It helps to normalize 

the learning method. The fully connected layer is like the 

output layer of the Artificial Neural Network; here error and 

score are calculated. The main barrier in the convolutional 

neural network is that input pixel is merged with other pixel 

value in the convolutional layer. So, it could not fit for a 

problem where pixel-wise leveling is required. The fully 

connected convolutional neural network [3, 4] solves this 

problem by mapping individual pixel(input) with output level. 

Here input size is same as output size in each layer. In this 

paper, we proposed an optimal algorithm of this paper[5], 

which used a similar method for pixel-wise mapping in the 

fully connected convolutional neural network[3,4], which gives 

same expected result with less complexity. This algorithm is 

applied to the satellite data set (D-STL). It contains RGB band 

and multi-multi-spectrum band image(IR) data set. All these 

band image files are merged into a single image. The edging 

and reduce the pixel value between 0 to 1.0 is done before 

merging the image. The parallel version of this algorithm is 

implemented on OpenMP API, which facilitated program by 

dividing it into separate work share model. Here parent thread 

initiates child threads in a parallel region after execution of the 

parallel region child threads merged back to the parent thread. 
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This algorithm is also used in MPI cluster with OpenMP. MPI 

is massage passing interface which is popularly used in HPC 

cluster. Here we used 2 processes  in a single machine. In this 

project, Intel 64 bit hardware with  i5 processor and 3.3GB 

RAM is used for providing computation power. 

 

Related work 

 

Parallelization in Artificial Neural Network is an old approach. 

As previously mentioned papers [2, 3, 4] optimizes the neural 

network by GPU cluster. In other are of research work is done 

on the base of OpenMP, MPI in a computer cluster [5,6]. 

However, research on optimizing the complexity in the neural 

network is very less in number. We, here to improve the 

performance of the algorithm not only by the developing 

parallel version of the algorithm but also reduced the 

complexity of the algorithm. 

 
Region-wise analysis of pixel-wise convolutional 

neural network 
 

 
 

Figure 1. Region wish computation in convolutional layer 

 

 
 

Figure 2. Program flow 

 

Here,  the linear and nonlinear operation is performed on a 

single and converted into a single output value. Forܰ ×  ܯ

input imageሺܰ − 𝑟ሻݓ × ሺܯ −  𝑟ሻoutput image is create for aݓ

single future of a layer. If the layer containing F future then 

total𝐹 × ሺܰ − 𝑟ሻݓ × ሺܯ −  𝑟ሻ output is crteated. It’sݓ

complexity very similar to the common convolutional neural 

network. For reduced computation gradient is calculated in 

forwarding operation is stored in local variables (Fig2.). 

 

Optimize convolutional neural network by region wise 

pixel selection 

 
In this method(Fig1.), Input is divided into a number of 

regions, and then the result is calculated. 

 

Region 1: rows and columns of pixel (input value) in this 

region is less than equal to ݓ𝑟, ܿݓ 

Region 2: Columns of the pixel (input value) in this region is 

greater than ܿݓ, but less then ܯ −  and row is ܿݓ

less then equal to ݓ𝑟. 

Region 3: Columns of the pixel (input value) in this region is 

greater than ܯ −  .𝑟ݓand row is less then ܿݓ

Region 4: Columns of the pixel (input value) is less than ܿݓ 

and row value is greater then ݓ𝑟 but less then 

equal to ܰ −  .𝑟ݓ

Region 8: Column value of pixel (input value) is less than ܯ −  𝑟 but lessݓ and row valuye is greater then ܿݓ

then ܰ −  .𝑟ݓ

Region 5: Column value of the pixel in this area is larger then ܯ −  and row value is greater ܯ and equal to ܿݓ

then ݓ𝑟 but less then ܰ −  .𝑟ݓ

Region 6: Column value of the pixel in this area is less than, 

equal to ܿݓ and row value is greater then ܰ −  𝑟ݓ

but less then, equal to ܰ. 

Region 9: Column value of the pixel in this area is larger then ܿݓ and equal to ܯ −  and row value is greater ܿݓ

then ܰ −  .ܰ 𝑟 but less then, equal toݓ

Region 7: Column value of the pixel in this area is larger then ܿݓ and equal to ܯ −  and row value is greater ܿݓ

then ܰ −  .ܰ 𝑟 but less then, equal toݓ

 

The operation of region wise pixel selection 

 

 Here multiplication operation is done in every pixel 

individually.  

 If pixel (input value) is in the Region 1 then every weight 

which rows and columns are less than equal to is added and 

the sum of this value is multiplied by the pixel(input 

value). 

 If pixel (input value) is in the Region 2 then the addition of 

every row wish addition every weight which has row value 

is less than, equal to the row value of the pixel (input 

value) is multiply by the pixel (input value). 

 For Region 3 pixel (input value) is multiplied with the 

summation of weights which have larger row and column 

value than the pixel (input value). 

 A pixel in the Region 4 is multiplied by the sum of column 

sum of weights which have less column value then this 

pixel (input value). 

 A pixel in the Region 5 is multiplied by the sum of column 

sum of weights which have greater column value then this 

pixel (input value). 

 



 A pixel in the Region 8 is multiplied by the sum of column 

sum of all weights. 

 A pixel in the Region 6 is multiplied by the sum of 

weights, which have greater row and column value. 

 A pixel in the Region 9 is multiplied by the sum of the sum 

of rows of weights, which have greater row. 

 A pixel in the Region 7 is multiplied by the sum of 

weights, which have greater row and column value. 

 

The complexity of region wise pixel selection 

 

 For reduce operation complexity row wish, column wish 

sum and the total sum of the weights are previously 

computed for each forward operation. 

 Calculate the total of the weights from weight matrix take ܱሺݓ𝑟 ×  .ሻ operationܿݓ

 Calculate total of the column wish weights take ܱሺ𝑊𝑅ሻ for 

each column so total take ܱሺݓ𝑟 ×  ሻܿݓ

 Similarly, row wish sum is calculated in ܱሺݓ𝑟 ×  ሻܿݓ

operation. 

 This loop can merge to a single operation which 

takesܱሺݓ𝑟 ×  .ሻܿݓ
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Let say the pixel (input value) position is (x,y). 

 For Region 1 operation complexity is ܱሺݔ ×  ሻ for allݕ

elements, total operation ܱሺݓ𝑟2  2ሻܿݓ ×

 For Region 2 operation complexity is ܱሺݔሻ, for all element  ܱሺሺܯ − ሻܿݓʹ ×  𝑟ሻݓ

 For Region 3 operation complexity is ܱሺሺܰ − ሻݔ ×  ሻ forݕ

all elements ܱሺݓ𝑟2 ×  .2ሻܿݓ 

 For Region 4 operation complexity is ܱሺݕሻfor all elements ܱሺሺܰ − 𝑟ሻݓʹ ×  ሻܿݓ 

 For Region 5 operation complexity is ܱሺܯ −  ሻ for allݕ

elementsܱሺሺܰ − 𝑟ሻݓʹ ×  ሻܿݓ 

 For Region6 operation complexity is ܱ(ሺܰ − ሻݔ ×  for ,(ݕ

all elements ܱሺݓ𝑟2 ×  2ሻܿݓ 

 For Region 8 operation complexity is ܱሺͳሻ, for all 

elements ܱሺሺܰ − 𝑟ሻݓʹ × ሺܯ −  ሻሻܿݓʹ

 For Region9 operation complexity is ܱሺሺܰ −  ሻሻ, for allݔ

elements ܱሺሺܯ − ሻܿݓʹ ×  𝑟ሻݓ

 For Region 7 operation complexity is  ܱሺሺܰ − ሻݔ × ሺܯ 𝑟2ݓሻሻ, for all elements ܱሺݕ− ×   2ሻܿݓ 
 

Total operation perform for a single convolutional forward 

operation by this method is ܱሺ4 × ሺݓ𝑟 × ሻ2ܿݓ + ʹ ×ሺܯ − ሻܿݓʹ × 𝑟ሻݓ + ʹ × ሺܰ − 𝑟ሻݓʹ × ܿݓ  + ሺܰ − 𝑟ሻݓʹ ×ሺܯ − 𝑟ݓ ሻሻ. Whenܿݓʹ = ܰ ,ܿݓ = then ܱሺ4ܯ × 𝑟4ݓ + 4 ×ሺܰ − 𝑟ሻݓʹ × 𝑟ሻݓ + ሺܰ −  . 𝑟ሻ2ሻݓʹ

When ݓ𝑟 ≪ ܰ, then ܱሺሺܰ −  𝑟ሻ2ሻݓʹ
 

Total operation perform for a single convolutional layer in 

LeNet is ܱሺሺܰ2 × ܰ 𝑟2ሻ2ሻ. Whenݓ = ,ܯ 𝑎𝑛݀ ݓ𝑟 = 𝑟ݓ If ܿݓ ≪ ܰ then ܱሺܰ4ሻ. 
 

The parallel implementation is done by OpenMP and MPI by 

following parts. 
 

OpenMP: Work sharing is applying on each layer. The 

gradient is calculated for each forward operation. In 

forwarding operation of each convolutional layer 

gradient of the previous layer is calculated. 
 

MPI: In the model, Image is dividing and shared by Master to 

slave process, the beginning and ending are given to each 

process. 
 

Gradient value for each forward operation is calculated and 

shared with other processes in forwarding operation. After 

training and testing result of percentage of each is send back to 

Master process. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Result analysis 

 
Form Table I and Table II it is clear that this model gives 

better performance with 5 processes.  

Conclusion 

 
More optimal algorithm for pixel-wise analysis is introduced. 

A parallel version of the method is introduced here. Also, the 

resulted performance is analyzed. As Satellite object analysis is 

complicated, the more effective algorithm is needed to analyze 

satellite images. So, further study has to be done in this field. 
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Table I.  Serial and OpenMP Code performance 

 

Size of Data Set Serial Code Parallel version (OpenMP) of Optimize Code 

(5 proceses) 

4 Threads 8 Threads 

644MB 30  minute 12  minute 3.6 minute 

1 GB 1 hour 24  minute 7. 2 minute 

1.5 GB 1hour 30 minute 36  minute 10.8 minute 

 
Table II.  Serial and OpenMP-MPI Code performance 

 
Size of Data Set Serial Code Parallel version (OpenMP) of Optimize 

Code (6 process) 

4 threads 8 threads 

644MB 30minute 14  minute 5  minute 

1 GB 1 hour 30  minute 15  minute 

1.5GB 1hour 30 minute 40  minute 20  minute 
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