

 z

RESEARCH ARTICLE

EFFECTIVE FORWARD AND BACKWARD PROPAGATION METHOD FOR PIXEL-WISE

CONVOLUTIONAL NEURAL NETWORK

*,1Bikramjit Chowdhury, 1Dr. Meena, K., 2Ruchika Vyas and 2Aditya Kumar Sinha

1Department of Computer Science and Engineering, Veltech Dr.RR & Dr.SR University, Chennai, Tamil Nadu
2Centre for Development of Advanced Computing (C-DAC), Pune, India

ARTICLE INFO ABSTRACT

Satellite Image is used to analysis the ground area to identify the object. The main barrier of this

image processing method is the pixel-wise analysis. The fully convolutional neural network is a

popular method to process this type of image processing. However, train stage is taken the maximum

computation of this method. Parallelize version of this method to reduce computation time is

researching topics, now. But little work is done on optimize the complexity of the algorithm of this

method. In this paper, we find an optimized algorithm solution of this algorithm. Also, the result of the

parallel version of the proposed algorithm is discussed.

Copyright©2017, Rachana and Raj Kumar. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The Convolutional Neural Network is the extracted version of

the artificial neural network, which was first introduced on

1943 based on cat vision. The Artificial Neural Net is the

artificial improvement of biological Neural functionality. Like,

biological neuron it takes an input value and process it then

passes it, by applying Linear operation, nonlinear operation and

then sends to the next layer neuron(hidden layer).Like previous

neuron the next neuron process (linear-nonlinear operation) the

input data and trance to the next neuron. This process is

continued until it reaches the output layer, where the score is

calculated and compared it with expected score to calculate the

error. Base on the error weights of each neuron is updated to

reduce it. The Convolutional Neural Network first introduced

on 1997 by LeNet-5[1]. It becomes more popular by Alex

Net[2] in 2012 when a parallel version by GPU and addition

future like Dropout concept was introduced. They introduced

their work by a library like cudaCNN [2]. As per LeNet-5[1]

the basic convolutional neural network containing

convolutional layer, pooling layer, fully connected layer.

Corresponding author: Bikramjit Chowdhury,
Department of Computer Science and Engineering, Veltech Dr. RR &

Dr. SR University, Chennai, Tamil Nadu.

The convolutional layer performs the same operation (linear-

non-linear) like the neuron on the artificial neuron network. In

the pooling layer, the future is reduced. It helps to normalize

the learning method. The fully connected layer is like the

output layer of the Artificial Neural Network; here error and

score are calculated. The main barrier in the convolutional

neural network is that input pixel is merged with other pixel

value in the convolutional layer. So, it could not fit for a

problem where pixel-wise leveling is required. The fully

connected convolutional neural network [3, 4] solves this

problem by mapping individual pixel(input) with output level.

Here input size is same as output size in each layer. In this

paper, we proposed an optimal algorithm of this paper[5],

which used a similar method for pixel-wise mapping in the

fully connected convolutional neural network[3,4], which gives

same expected result with less complexity. This algorithm is

applied to the satellite data set (D-STL). It contains RGB band

and multi-multi-spectrum band image(IR) data set. All these

band image files are merged into a single image. The edging

and reduce the pixel value between 0 to 1.0 is done before

merging the image. The parallel version of this algorithm is

implemented on OpenMP API, which facilitated program by

dividing it into separate work share model. Here parent thread

initiates child threads in a parallel region after execution of the

parallel region child threads merged back to the parent thread.

ISSN: 0975-833X

International Journal of Current Research
Vol. 9, Issue, 05, pp.xxxxxxx, May, 2017

 INTERNATIONAL JOURNAL

 OF CURRENT RESEARCH

Article History:

Received xxxxxxxxx, 2016

Received in revised form

xxxxxxxx, 2016

Accepted xxxxxxxx, 2017

Published online xxxxxxx, 2017

Key words:

Artificial Neural Network,

Convolutional Neural Network,

Fully connected convolution neural

Network, OpenMP, MPI.

 Available online at http://www.journalcra.com

Citation: Rachana, A. and Raj Kumar, B., 2017. “Effective forward and backward propagation method for pixel-wise convolutional neural network”,
International Journal of Current Research, 9, (05), xxxxxxxxxx.

This algorithm is also used in MPI cluster with OpenMP. MPI

is massage passing interface which is popularly used in HPC

cluster. Here we used 2 processes in a single machine. In this

project, Intel 64 bit hardware with i5 processor and 3.3GB

RAM is used for providing computation power.

Related work

Parallelization in Artificial Neural Network is an old approach.

As previously mentioned papers [2, 3, 4] optimizes the neural

network by GPU cluster. In other are of research work is done

on the base of OpenMP, MPI in a computer cluster [5,6].

However, research on optimizing the complexity in the neural

network is very less in number. We, here to improve the

performance of the algorithm not only by the developing

parallel version of the algorithm but also reduced the

complexity of the algorithm.

Region-wise analysis of pixel-wise convolutional

neural network

Figure 1. Region wish computation in convolutional layer

Figure 2. Program flow

Here, the linear and nonlinear operation is performed on a

single and converted into a single output value. Forܰ × ܯ

input imageሺܰ − 𝑟ሻݓ × ሺܯ − 𝑟ሻoutput image is create for aݓ

single future of a layer. If the layer containing F future then

total𝐹 × ሺܰ − 𝑟ሻݓ × ሺܯ − 𝑟ሻ output is crteated. It’sݓ

complexity very similar to the common convolutional neural

network. For reduced computation gradient is calculated in

forwarding operation is stored in local variables (Fig2.).

Optimize convolutional neural network by region wise

pixel selection

In this method(Fig1.), Input is divided into a number of

regions, and then the result is calculated.

Region 1: rows and columns of pixel (input value) in this

region is less than equal to ݓ𝑟, ܿݓ

Region 2: Columns of the pixel (input value) in this region is

greater than ܿݓ, but less then ܯ − and row is ܿݓ

less then equal to ݓ𝑟.

Region 3: Columns of the pixel (input value) in this region is

greater than ܯ − .𝑟ݓand row is less then ܿݓ

Region 4: Columns of the pixel (input value) is less than ܿݓ

and row value is greater then ݓ𝑟 but less then

equal to ܰ − .𝑟ݓ

Region 8: Column value of pixel (input value) is less than ܯ − 𝑟 but lessݓ and row valuye is greater then ܿݓ

then ܰ − .𝑟ݓ

Region 5: Column value of the pixel in this area is larger then ܯ − and row value is greater ܯ and equal to ܿݓ

then ݓ𝑟 but less then ܰ − .𝑟ݓ

Region 6: Column value of the pixel in this area is less than,

equal to ܿݓ and row value is greater then ܰ − 𝑟ݓ

but less then, equal to ܰ.

Region 9: Column value of the pixel in this area is larger then ܿݓ and equal to ܯ − and row value is greater ܿݓ

then ܰ − .ܰ 𝑟 but less then, equal toݓ

Region 7: Column value of the pixel in this area is larger then ܿݓ and equal to ܯ − and row value is greater ܿݓ

then ܰ − .ܰ 𝑟 but less then, equal toݓ

The operation of region wise pixel selection

 Here multiplication operation is done in every pixel

individually.

 If pixel (input value) is in the Region 1 then every weight

which rows and columns are less than equal to is added and

the sum of this value is multiplied by the pixel(input

value).

 If pixel (input value) is in the Region 2 then the addition of

every row wish addition every weight which has row value

is less than, equal to the row value of the pixel (input

value) is multiply by the pixel (input value).

 For Region 3 pixel (input value) is multiplied with the

summation of weights which have larger row and column

value than the pixel (input value).

 A pixel in the Region 4 is multiplied by the sum of column

sum of weights which have less column value then this

pixel (input value).

 A pixel in the Region 5 is multiplied by the sum of column

sum of weights which have greater column value then this

pixel (input value).

 A pixel in the Region 8 is multiplied by the sum of column

sum of all weights.

 A pixel in the Region 6 is multiplied by the sum of

weights, which have greater row and column value.

 A pixel in the Region 9 is multiplied by the sum of the sum

of rows of weights, which have greater row.

 A pixel in the Region 7 is multiplied by the sum of

weights, which have greater row and column value.

The complexity of region wise pixel selection

 For reduce operation complexity row wish, column wish

sum and the total sum of the weights are previously

computed for each forward operation.

 Calculate the total of the weights from weight matrix take ܱሺݓ𝑟 × .ሻ operationܿݓ

 Calculate total of the column wish weights take ܱሺ𝑊𝑅ሻ for

each column so total take ܱሺݓ𝑟 × ሻܿݓ

 Similarly, row wish sum is calculated in ܱሺݓ𝑟 × ሻܿݓ

operation.

 This loop can merge to a single operation which

takesܱሺݓ𝑟 × .ሻܿݓ

 Let say the pixel (input value) position is (x,y).

 For Region 1 operation complexity is ܱሺݔ × ሻ for allݕ

elements, total operation ܱሺݓ𝑟2 2ሻܿݓ ×

 For Region 2 operation complexity is ܱሺݔሻ, for all element ܱሺሺܯ − ሻܿݓʹ × 𝑟ሻݓ

 For Region 3 operation complexity is ܱሺሺܰ − ሻݔ × ሻ forݕ

all elements ܱሺݓ𝑟2 × .2ሻܿݓ

 For Region 4 operation complexity is ܱሺݕሻfor all elements ܱሺሺܰ − 𝑟ሻݓʹ × ሻܿݓ

 For Region 5 operation complexity is ܱሺܯ − ሻ for allݕ

elementsܱሺሺܰ − 𝑟ሻݓʹ × ሻܿݓ

 For Region6 operation complexity is ܱ(ሺܰ − ሻݔ × for ,(ݕ

all elements ܱሺݓ𝑟2 × 2ሻܿݓ

 For Region 8 operation complexity is ܱሺͳሻ, for all

elements ܱሺሺܰ − 𝑟ሻݓʹ × ሺܯ − ሻሻܿݓʹ

 For Region9 operation complexity is ܱሺሺܰ − ሻሻ, for allݔ

elements ܱሺሺܯ − ሻܿݓʹ × 𝑟ሻݓ

 For Region 7 operation complexity is ܱሺሺܰ − ሻݔ × ሺܯ 𝑟2ݓሻሻ, for all elements ܱሺݕ− × 2ሻܿݓ

Total operation perform for a single convolutional forward

operation by this method is ܱሺ4 × ሺݓ𝑟 × ሻ2ܿݓ + ʹ ×ሺܯ − ሻܿݓʹ × 𝑟ሻݓ + ʹ × ሺܰ − 𝑟ሻݓʹ × ܿݓ + ሺܰ − 𝑟ሻݓʹ ×ሺܯ − 𝑟ݓ ሻሻ. Whenܿݓʹ = ܰ ,ܿݓ = then ܱሺ4ܯ × 𝑟4ݓ + 4 ×ሺܰ − 𝑟ሻݓʹ × 𝑟ሻݓ + ሺܰ − . 𝑟ሻ2ሻݓʹ

When ݓ𝑟 ≪ ܰ, then ܱሺሺܰ − 𝑟ሻ2ሻݓʹ

Total operation perform for a single convolutional layer in

LeNet is ܱሺሺܰ2 × ܰ 𝑟2ሻ2ሻ. Whenݓ = ,ܯ 𝑎𝑛݀ ݓ𝑟 = 𝑟ݓ If ܿݓ ≪ ܰ then ܱሺܰ4ሻ.

The parallel implementation is done by OpenMP and MPI by

following parts.

OpenMP: Work sharing is applying on each layer. The

gradient is calculated for each forward operation. In

forwarding operation of each convolutional layer

gradient of the previous layer is calculated.

MPI: In the model, Image is dividing and shared by Master to

slave process, the beginning and ending are given to each

process.

Gradient value for each forward operation is calculated and

shared with other processes in forwarding operation. After

training and testing result of percentage of each is send back to

Master process.

Result analysis

Form Table I and Table II it is clear that this model gives

better performance with 5 processes.

Conclusion

More optimal algorithm for pixel-wise analysis is introduced.

A parallel version of the method is introduced here. Also, the

resulted performance is analyzed. As Satellite object analysis is

complicated, the more effective algorithm is needed to analyze

satellite images. So, further study has to be done in this field.

Acknowledgement

I would like to thank Dr. K. Meena. of Veltech University

Chennai for her valuable suggestions and Mr. Aditya Kumar

Sinha and Miss. Ruchika from C-DAC Pune for initiating

research in the university providing platform to students with

the opportunity to gain knowledge about the area of research.

This work is done as part of M.Tech dissertation work.

Table I. Serial and OpenMP Code performance

Size of Data Set Serial Code Parallel version (OpenMP) of Optimize Code

(5 proceses)

4 Threads 8 Threads

644MB 30 minute 12 minute 3.6 minute

1 GB 1 hour 24 minute 7. 2 minute

1.5 GB 1hour 30 minute 36 minute 10.8 minute

Table II. Serial and OpenMP-MPI Code performance

Size of Data Set Serial Code Parallel version (OpenMP) of Optimize

Code (6 process)

4 threads 8 threads

644MB 30minute 14 minute 5 minute

1 GB 1 hour 30 minute 15 minute

1.5GB 1hour 30 minute 40 minute 20 minute

REFERENCES

LeCun, Y. Bottou, L. Bengio, Y. and Haffner, P. 1998.

“Gradient-based learning applied to document

recognition”, Proceedings of the IEEE, 1998.

Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

classification with deep convolutional neural networks”, in

NIPS, 2012.

Chen, L.C. Papandreou, G. Kokkinos, I. Murphy, K. and

Yuille, A. L. 2015. “Semantic image segmentation with

deep convolutional nets and fully connected CRFs”. In

ICLR, 2015.

Long, J. Shelhamer, E. and Darrell, T. 2015. Fully

convolutional networks for semantic segmentation. In

CVPR, 2015

Hyeonwoo Noh, Seunghoon Hong and Bohyung Han,

Department of Computer Science and Engineering, Postech

Korea, “Learning Deconvolution Network for Semantic

Segmentation”, arXiv:1505.04366v1 [cs.CV] 17 May 2015

Daniel del and Hoyo Rodriguez, “Optimization of

Backpropagation Learning Algorithm on MLP Networks”,

2 Nov 2012.

Schuessler, O. and Loyola, D. 2011. ”Parallel Training of

Artificial Neural Networks Using Multithreaded and

Multicore CPUs”. In: Dobnikar A., Lotrič U., Šter B. (eds)
Adaptive and Natural Computing Algorithms. ICANNGA

2011. Lecture Notes in Computer Science, vol 6593.

Springer, Berlin, Heidelberg.

	Related work
	Parallelization in Artificial Neural Network is an old approach. As previously mentioned papers [2, 3, 4] optimizes the neural network by GPU cluster. In other are of research work is done on the base of OpenMP, MPI in a computer cluster [5,6]. Howeve...
	Optimize convolutional neural network by region wise pixel selection
	Region 1: rows and columns of pixel (input value) in this region is less than equal to 𝑤𝑟, 𝑤𝑐
	Region 2: Columns of the pixel (input value) in this region is greater than 𝑤𝑐, but less then 𝑀−𝑤𝑐 and row is less then equal to 𝑤𝑟.
	Region 3: Columns of the pixel (input value) in this region is greater than 𝑀−𝑤𝑐 and row is less then𝑤𝑟.
	Region 4: Columns of the pixel (input value) is less than 𝑤𝑐 and row value is greater then 𝑤𝑟 but less then equal to 𝑁−𝑤𝑟.
	Region 8: Column value of pixel (input value) is less than 𝑀−𝑤𝑐 and row valuye is greater then 𝑤𝑟 but less then 𝑁−𝑤𝑟.
	Region 5: Column value of the pixel in this area is larger then 𝑀−𝑤𝑐 and equal to 𝑀 and row value is greater then 𝑤𝑟 but less then 𝑁−𝑤𝑟.
	Region 6: Column value of the pixel in this area is less than, equal to 𝑤𝑐 and row value is greater then 𝑁−𝑤𝑟 but less then, equal to 𝑁.
	Region 9: Column value of the pixel in this area is larger then 𝑤𝑐 and equal to 𝑀−𝑤𝑐 and row value is greater then 𝑁−𝑤𝑟 but less then, equal to 𝑁.
	Region 7: Column value of the pixel in this area is larger then 𝑤𝑐 and equal to 𝑀−𝑤𝑐 and row value is greater then 𝑁−𝑤𝑟 but less then, equal to 𝑁.

	The operation of region wise pixel selection
	 Here multiplication operation is done in every pixel individually.
	 If pixel (input value) is in the Region 1 then every weight which rows and columns are less than equal to is added and the sum of this value is multiplied by the pixel(input value).
	 If pixel (input value) is in the Region 2 then the addition of every row wish addition every weight which has row value is less than, equal to the row value of the pixel (input value) is multiply by the pixel (input value).
	 For Region 3 pixel (input value) is multiplied with the summation of weights which have larger row and column value than the pixel (input value).
	 A pixel in the Region 4 is multiplied by the sum of column sum of weights which have less column value then this pixel (input value).
	 A pixel in the Region 5 is multiplied by the sum of column sum of weights which have greater column value then this pixel (input value).
	 A pixel in the Region 8 is multiplied by the sum of column sum of all weights.
	 A pixel in the Region 6 is multiplied by the sum of weights, which have greater row and column value.
	 A pixel in the Region 9 is multiplied by the sum of the sum of rows of weights, which have greater row.
	 A pixel in the Region 7 is multiplied by the sum of weights, which have greater row and column value.

	The complexity of region wise pixel selection
	 For reduce operation complexity row wish, column wish sum and the total sum of the weights are previously computed for each forward operation.
	 Calculate the total of the weights from weight matrix take 𝑂(𝑤𝑟×𝑤𝑐) operation.
	 Calculate total of the column wish weights take 𝑂(𝑊𝑅) for each column so total take 𝑂(𝑤𝑟×𝑤𝑐)
	 Similarly, row wish sum is calculated in 𝑂(𝑤𝑟×𝑤𝑐) operation.
	 This loop can merge to a single operation which takes𝑂,𝑤𝑟×𝑤𝑐..
	 Let say the pixel (input value) position is (x,y).
	 For Region 1 operation complexity is 𝑂,𝑥×𝑦. for all elements, total operation 𝑂(,𝑤𝑟-2.× ,𝑤𝑐-2.)
	 For Region 2 operation complexity is 𝑂(𝑥), for all element 𝑂((𝑀−2𝑤𝑐)×𝑤𝑟)
	 For Region 3 operation complexity is 𝑂((𝑁−𝑥)×𝑦) for all elements 𝑂(,𝑤𝑟-2.× ,𝑤𝑐-2.).
	 For Region 4 operation complexity is 𝑂(𝑦)for all elements 𝑂((𝑁−2𝑤𝑟)× 𝑤𝑐)
	 For Region 5 operation complexity is 𝑂(𝑀−𝑦) for all elements𝑂((𝑁−2𝑤𝑟)× 𝑤𝑐)
	 For Region6 operation complexity is 𝑂,,𝑁−𝑥.×𝑦., for all elements 𝑂(,𝑤𝑟-2.× ,𝑤𝑐-2.)
	 For Region 8 operation complexity is 𝑂,1., for all elements 𝑂((𝑁−2𝑤𝑟)×(𝑀−2𝑤𝑐))
	 For Region9 operation complexity is 𝑂((𝑁−𝑥)), for all elements 𝑂((𝑀−2𝑤𝑐)×𝑤𝑟)
	 For Region 7 operation complexity is 𝑂((𝑁−𝑥)×(𝑀−𝑦)), for all elements 𝑂(,𝑤𝑟-2.× ,𝑤𝑐-2.)
	Total operation perform for a single convolutional forward operation by this method is 𝑂,4×,,𝑤𝑟×𝑤𝑐.-2.+2×,𝑀−2𝑤𝑐.×𝑤𝑟.+2×,𝑁−2𝑤𝑟.× 𝑤𝑐+(𝑁−2𝑤𝑟)×(𝑀−2𝑤𝑐)). When 𝑤𝑟=𝑤𝑐, 𝑁=𝑀then 𝑂,4×,𝑤𝑟-4.+4×,𝑁−2𝑤𝑟.×𝑤𝑟.+,(𝑁−2𝑤𝑟)-2.) .
	When 𝑤𝑟≪𝑁, then 𝑂,((𝑁−2𝑤𝑟)-2.)
	Total operation perform for a single convolutional layer in LeNet is 𝑂,((,𝑁-2.×,𝑤𝑟-2.)-2.). When 𝑁=𝑀,𝑎𝑛𝑑 𝑤𝑟=𝑤𝑐 If 𝑤𝑟≪𝑁 then 𝑂,(𝑁-4.).
	The parallel implementation is done by OpenMP and MPI by following parts.
	OpenMP: Work sharing is applying on each layer. The gradient is calculated for each forward operation. In forwarding operation of each convolutional layer gradient of the previous layer is calculated.
	MPI: In the model, Image is dividing and shared by Master to slave process, the beginning and ending are given to each process.
	Gradient value for each forward operation is calculated and shared with other processes in forwarding operation. After training and testing result of percentage of each is send back to Master process.

	Result analysis
	Form Table I and Table II it is clear that this model gives better performance with 5 processes.
	Conclusion
	More optimal algorithm for pixel-wise analysis is introduced. A parallel version of the method is introduced here. Also, the resulted performance is analyzed. As Satellite object analysis is complicated, the more effective algorithm is needed to analy...

	Acknowledgement
	Table I. Serial and OpenMP Code performance
	Table II. Serial and OpenMP-MPI Code performance
	REFERENCES

