Github-Shiban

shiban.electrical@gmail.com

(562)503-7809

SUMMARY

RTL Design/Verification Engineer with 3000+ hours of hands-on experience in designing and verifying complex systems using SystemVerilog, UVM, Perl Scripting. Profound knowledge of ASIC/FPGA/SOC Design flow and Verification Methodology. In-depth knowledge of writing test plans, coverage plans, debugging RTL and Gate-Level netlists. Strong Communication skills.

TECHNICAL SKILLS

Design/Verification Languages: Verilog, SystemVerilog, C/C++ **EDA/ Software Tools:** Synopsys VCS, Questasim, Xilinx Vivado

Design skills: RTL Design, Timing closure, Clock Domain Crossing, OOP, FSM, ASIC/FPGA/SOC Design flow

Verification Skills: UVM, Functional Verification, Assertion based Verification-SVA, Constraint Random Coverage Driven Verification **Architecture:** Branch Prediction, Out of Order Superscalar Pipeline, Instruction Level Parallelism, Cache Coherence, Multilevel Cache.

WORK EXPERIENCE

MAVEN SILICON, RTL Design and Verification, Trainee

July 2020- Present

- Applied concepts like Verification flow, Self-checking testbench, Randomization, Constraints, Mailbox, Coverage, SystemVerilog Assertions.
- Managed RTL Design/Verification using SV for Verification for the following projects:

Verification Projects:

Designed and Verified Dual Port Ram [SystemVerilog, Questasim]

- Created a testbench using SystemVerilog to verify Dual port RAM functionality. Stimulus was driven by Driver to DUT.
- Implemented reference model in scoreboard and compared actual data with expected data in scoreboard.

RTL/Design/ Projects:

Design of Arbiter [SystemVerilog, Questasim]

- Designed an Arbiter for controlling 3 Processors on Questasim using Verilog/SystemVerilog. FSM was implemented in the design.
- Achieved a Code Coverage of 88% which was then improved to 100% by adding testcases.

Design of Vending Machine [SystemVerilog, Questasim]

- Designed a Vending machine on Questasim using Verilog/SystemVerilog. FSM, and 7-segment display were implemented in the design.
- Achieved a Code Coverage of 83% which was then improved to 89% by adding testcases.

Design of Digital Watch [SystemVerilog, Questasim]

- Designed a Digital watch by instantiating following sub modules for alarm clock, counter, FSM, time generator, lcd driver in the design.
- The modules were designed and functionally verified on Questasim using Verilog/SystemVerilog.

Design of 32-bit RISC-y Processor [SystemVerilog, Synopsys VCS]

- Designed a 32-bit RISC-y Processor using bottom-up methodology. The design was functionally verified on Synopsys VCS.
- Sub modules for Multiplexer, Counter, Register, ALU were instantiated in the design using Verilog/SystemVerilog.

Graduate Teaching Assistant, CSUN

Jan 2019- Dec 2020

- Teaching assistant for courses like System on chip design, Digital Systems Design, Design of Digital Computers, Digital Systems and Lab.
- Lead over 120 students and solved their queries. Hold responsibility for grading quizzes and exams and leading in an assignment every week.

QUALITY FABRICATION Inc, Internship. Project Management, Data Analyst, Northridge, CA

May 2019- Dec 2019

- Data analysis for multiple engineering departments using Excel, provided supervision to supervisors by giving direction based on analysis.
- This resulted in raising monthly turnover by 25%. Managed a team of over 50 staff and 4 supervisors with great communication skills.

ACADEMIC PROJECTS

Clean Bot Robot, NASA's project, Navigation Department, CSUN

July 2019- July 2020

- Designing a robot that sanitizes the NASA's floor to kill germs and microorganisms using UV led's, by avoiding flight hardware in the room.
- The SLAM algorithm helps to localize and mapping the room using data fusion of sensor data. Tools: Raspberry Pi, Technology: Python.

Ping-Pong game [FPGA, VHDL, Xilinx Vivado]

Dec 2019

- Designed and simulated ping pong game using FPGA and tested on monitor using VGA controller through UART interface.
- The VGA generates the timing and synchronization signals. The movement of the ball depends on the angle of the ball hitting the paddle.

Stepper Motor [FPGA, VHDL, Xilinx Vivado]

June 2019

- Controlling stepper motor in clockwise/anti-clockwise direction with DIP switches and push button. Technology: Xilinx (Vivado), VHDL.
- Used PMOD for the connection of stepper motor on Zedboard (FPGA) using UART interface.

EDUCATION